Half-life of the duck hepatitis B virus covalently closed circular DNA pool in vivo following inhibition of viral replication.
نویسندگان
چکیده
Covalently closed circular DNA (cccDNA) is a crucial intermediate in the replication of hepadnaviruses. We inhibited the replication of duck hepatitis B virus in congenitally infected ducks with a combination of lamivudine and a dideoxyguanosine prodrug. Inhibition of viral replication should prevent renewal of the cccDNA pool, and its decay was measured in liver biopsy samples collected over a 5-month period. In three ducks, the cccDNA pools declined exponentially, with half-lives ranging from 35 to 57 days. In two others, the pools declined exponentially for about 70 days but then stabilized at about 6 copies/diploid genome. The selection of drug-resistant virus mutants is an unlikely explanation for this unexpected stabilization of cccDNA levels. Liver sections stained for the cell division marker PCNA showed that animals in which cccDNA loss was continuous had significantly greater numbers of PCNA-positive nuclei than did those animals in which cccDNA levels had plateaued.
منابع مشابه
Inhibitory effect of adefovir on viral DNA synthesis and covalently closed circular DNA formation in duck hepatitis B virus-infected hepatocytes in vivo and in vitro.
The elimination of viral covalently closed circular DNA (CCC DNA) from the nucleus of infected hepatocytes is an obstacle to achieving sustained viral clearance during antiviral therapy of chronic hepatitis B virus (HBV) infection. The aim of our study was to determine whether treatment with adefovir, a new acyclic nucleoside phosphonate, the prodrug of which, adefovir dipivoxil, is in clinical...
متن کاملA quantitative competitive PCR assay for the covalently closed circular form of the duck hepatitis B virus.
A crucial step in the establishment and maintenance of a hepadnavirus infection is the formation of a pool of covalently closed circular viral genomes in the nucleus. Changes in the size of this pool occur when an infection is established, when acute infections are resolved, and when chronic infections are treated with antiviral drugs. However, the lack of a quantitative assay for the cccDNA fo...
متن کاملUracil DNA Glycosylase Counteracts APOBEC3G-Induced Hypermutation of Hepatitis B Viral Genomes: Excision Repair of Covalently Closed Circular DNA
The covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV) plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC) DNA (partially double-stranded DNA) into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deaminati...
متن کاملZinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture.
Duck hepatitis B virus (DHBV) is a model virus for human hepatitis B virus (HBV), which infects approximately 360 million individuals worldwide. Nucleoside analogs can decrease virus production by inhibiting the viral polymerase; however, complete clearance by these drugs is not common because of the persistence of the HBV episome. HBV DNA is present in the nucleus as a covalently closed circul...
متن کاملConcerted action of activation-induced cytidine deaminase and uracil-DNA glycosylase reduces covalently closed circular DNA of duck hepatitis B virus.
Covalently closed circular DNA (cccDNA) forms a template for the replication of hepatitis B virus (HBV) and duck HBV (DHBV). Recent studies suggest that activation-induced cytidine deaminase (AID) functions in innate immunity, although its molecular mechanism of action remains unclear, particularly regarding HBV restriction. Here we demonstrated that overexpression of chicken AID caused hypermu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 76 12 شماره
صفحات -
تاریخ انتشار 2002